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Abstract-An isotropic, variable thickness, annular plate with clamped edges is bent by prescribing a
rotation of the inner edge about a diameter, with the outer edge held fixed. The potential energy formulation
of von Karman plate theory and the Ritz method arc employed to calculate solutions for deformation and
stress. The external moment is obtained with Castigliano's theorem. Solutions are presented to show the
effect of a large rotation on the bending and membrane stresses in the plate and to show how these stresses
arc affected by the thickness distribution.

INTRODUCTION
Annular plates of both uniform and variable thickness have many applications in engineering
structures. An application that is currently receiving considerable attention is the use of a
variable thickness annular plate in a coupling for power transmission shafts which may
normally become misaligned, due to shaft flexure or thermal expansion during operation; the
misalignment is accommodated by asymmetric bending of the plate. Such plates have been
successfully designed to sustain transverse deflection cycles that are well into the nonlinear
range of the load-deflection response. Control of the bending stresses may be achieved by
design of the plate thickness profile. However, most coupling plates are currently designed with
a "hyperbolic profile", in which the thickness varies as the inverse square of the radius; this
profile is optimum only for torsional shear stress in the absence of flexure.

Small-deflection solutions for symmetric and asymmetric bending of annular plates, with
certain thickness profiles, have been available for many years. Calculated data for plates with
uniform thickness, and thickness that increases linearly with radius, are collected in a book by
Timoshenko[I]; corrections and additional data for the case of moment loading of uniform
thickness plates were recently given by Brock[2]. Design data for plates with thickness that
decreases according to a power law are given in a comprehensive paper by Wolff[3]. These
references describe closed form, or series, solutions of the classical equilibrium equations for a
thin plate. The finite element method has been utilized for calculation of asymmetric bending
solutions for small deflections of annular plates when the plate thickness is uniform[4] or
changing linearly with radius[5].

A number of publications are found which describe solutions for large-deftection bending of
annular plates. Most of these solutions, however, require the plate to be prestressed with a
radial load [e.g. Kefs. 6-8] and all except Ref. [9] treat only uniform thickness plates.
Large-deflection solutions that do not presume prestress are given for symmetric bending by Hart
and Evans [10] and for unsymmetrical bending by Alzheimer and Davis [11]. References [6­
8, 10, 11] describe numerical solutions ofgeometrically nonlinear equilibrium equations for a plate
of uniform thickness. Reference [9] utilizes von Karman plate theory and the Ritz method to
calculate large-deftection solutions for symmetric bending of variable thickness annular plates.

The work reported in this paper extends the energy formulation and solution procedure
utilized in [9] to include asymmetric bending of variable thickness annular plates. Boundary
conditions for the special case of asymmetric bending treated by Alzheimer and Davis [1 I] are
used and the solution obtained by the energy method is compared with experimental data given
in [I I]. Additional solutions are presented to show the effect of taper on the stress distributions
in the same plate.

FORMULATION

The strain energy of the plate is separated into two components: membrane energy, V""
produced by extensional strains, and bending energy, Vb, produced by curvature changes. For
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asymmetric bending, these energy expressions are

Vm=~J JK[f~+f~+2VE"E99+~(1-V)f~]rdrd8

Vb = ~JJD[(KIT +K99)2 - 2(1- V)(KtrK99 - K~»)r dr d8

where

(1)

(2)

K= 2Gt and
I-II

Gt l

D=-­6(1- II)

are the extensional and flexural rigidities, respectively, with G and II denoting the shear
modulus and Poisson's ratio. An axisymmetric thickness variation t(r) is assumed; it influences
the strain energy by remaining inside the integrals. The integrals are evaluated over the plate
midsurface, in the region (O:s 8:s 217', rb :s r:s r.) where rb and r. are the inner and outer radii,
respectively. If the plate is only edge loaded (assumed in this paper), the potential energy, IT, is

(3)

The following formulation for large-deflection bending is commonly known as the von
Karman theory of flat plates [12). The strain-displacement equations are

(4)

and the curvatures of the deformed midsurface are given by

(5)

In the above, u(r, 8) and v(r, 8) are tangential displacements in the radial and circumferential
directions, respectively, and w(r, 8) is the transverse displacement of a point initially on the
undeformed mid-surface of the plate. The stress and moment resultants are

NIT = K(fIT + J'f99)

N" =Gtf"

N99 =K(f99 + J'f",)

M", =- D(K", + IIK99)

M" = D(l- V)K"

M99 =- D(K99 + IIKIT ).

(6)

(7)

The sign convention for the displacements and the resultants is given in Fig. l. The moment-
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curvature expressions are written so that a positive bending moment, M" or M", will make the
top surface convex. A positive twist moment, M,., wm produce positive slopes (aw/ar) and
(iJw/(un

For the example solutions, the plate edges are rigidly clamped and bending is produced by
prescribing a rotation, a, of the inner edge (called the hub) about a diameter, while the outer
edge (called the rim) is held fixed.t The displacement solution functions are therefore required
to satisfy the following forced boundary conditions, which describe built-in edges.

Inner Edge

Outer Edge

u(rb, 6) =r,,(cos a -I) cos2 9

v(r", 9) =r/>(J - cos a) sin 8cos 8

w(r", 8) =r" sin a cos 8

~~ (rh, 9) =sin a cos 9

(8)

(9)

u(r",8)=0

v(r". 8) =0

w(r",8)=0

ihv
ilr (r", 9) =0

The boundary conditions expressed by eqns (8) and (9) imply the bending is symmetric
about the hub diameter that is perpendicular to the hub rotation axis. The diameter of symmetry
is located at 9 =°and the potential energy is integrated over the plate half in the region
(O:s 8:s 11', r" :s r :s r.). The displacements u(r, 6) and w(r, 9) WIll be symmetric about 9= 0, 11'

and the displacement v(r, 9) will be antisymmetric about 8 =0, 11'. Further, the plate diameter
coinciding with the hub rotation axis will remain undeformed; this imposes the following
additional conditions on the displacement solution.

u(r, ""2) =u(r, 3""2) =0

vCr, ""2) =vCr, 3""2) =0

w(r, 'IT/2) =w(r, 3'lT/2) =O.

tThis particular case of asymmetric bending has been termed skew bending(3).
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Regardless of the nature of the bending, the expression (KrrK9IJ - K~), appearing in eqn (2),
contributes nothing to the differential equations of the plate. It may, however, contribute to the
natural boundary conditions [I2]. Since the specific plate problem solved in this paper is
formulated without natural boundary conditions, the expression has been dropped from eqn (2)
and the bending energy calculated according to the simpler expression

(10)

NUMERICAL SOLUTION

The solution is obtained by application of the principle of minimum potential energy which
states that, of all geometrically admissible displacement solutions, the exact solution minimizes
the potential energy, n. A displacement solution is geometrically admissible if it satisfies the
forced boundary conditions given by eqns (8) and (9). In most nonlinear problems only an
approximate solution can be found by using, e.g. the Ritz method[12] which is employed here.

Ritz method
To apply the Ritz method, approximate solutions for the displacement functions are written

as two-dimensional finite series.

u(r, 8) =Uo(r, 8) +f f aquii(r, 8)
i-I/-'

(11)

M N

w(r, 8) = wO<r, 8) +~ 'S' cl/wl/(r, 8)
,.1 f:l

where the functions uo, vo, Wo satisfy the boundary conditions (8) and (9), and will be called
initial functions. The function uii, vii, wlJ all satisfy homogeneous forced boundary conditions;
they are frequently called coordinate functions. With an infinite number of terms, these series
will converge to the exact solution provided each sequence of coordinate functions is complete
in the integration interval. Although these displacement functions will stabilize in a reasonable
number of terms, the bending stresses (which require the second derivative of w) may not be
acceptablet unless a large number of terms are taken, thereby introducing other numerical
difficulties. In the present work, convergence is enhanced and acceptable bending stresses are
found by utilizing displacement solution functions that are· capable of satisfying natural
boundary conditions, in addition to being geometrically admissible. This capability is acquired if
the second and third derivatives of Wo and wll, with respect to r, do not vanish on the
boundaries.

Solution junctions
The initial functions employed here are

( r. -r)Uo(r, 8) =rb(COs tt -1) _0_ cos:! 8
'o-'b
("-')VcI..', 8) =rb(l-cos tt) _0__ sin 8 cos 6

'0 -'b (12)

(13)

tThis is perhaps the main reason that the principle of minimum potential energy is not often employed for stress analysis.
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a(8) = rb sin Q' cos 8 and cI>(8) =sin Q' cos 8
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are the deflection and slope of the rotated hub circumference. Equation (13) is the exact
small-deftection solution for a beam with clamped ends, when the left end is deflected as shown
in Fig. 2.

The coordinate functions employed are

uii(r, 8) =u'(r) cos (2j - 1)8

vlj(r, 8) =u'(r) sin 2j8

wlj(r, 8) =wl(r) cos (2j -1)8

where u'(r) and wl(r) are given by

ul(r) =sin i1T(.!L..!...)
ro -rb

. (r. -r) (r. -r)w'(r) =cosh AI _0_ -cos Ai _o_
ro -rb ro - rb

( COShAI-COSAi)[' h 1(rO -r) " (ro-r)]-. . sm 1\1 -- -sml\l -- .smh AI - sm Ai ro - rb ro - rb

(14)

(IS)

(16)

The functions wl(r) are the natural vibration modes of a beam with clamped ends. The AI are
the natural frequencies, obtained from the frequency equation

cos Acosh A= 1. (17)

Values of AI are tabulated in most vibration handbooks. For this analysis, they were taken from
Ref. [13]. The solution functions defined by eqns (l1)-(J6) satisfy the forced boundary
conditions expressed by eqns (8) and (9) and the symmetry conditions. They also possess the
natural boundary condition capability discussed above.

The solution functions are used to calculate the strains and curvatures which appear in the
extensional strain energy expression (I) and the bending strain energy expression (10). The
specific functions permit the energy expressions to be integrated. The potential energy, ngiven
by eqn (3), is then reduced to an algebraic function of the 3x M x N constants all> bl}t ell> that
are needed for the summations in eqns (II).

lJI.8l

F'... 2. Deftected beam used for the initiaJ shipe in the soIutioa of aD uymmetric plate beIIdiaa problem.
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The energy minimizing constants are found by solving the following 3x M x N algebraic
equations.

where

an = aUm +aUb =0
aaij aaij aaij

an = aUm +aUb =0
abij abij abij

an =.aUm+aUb =0
aCij (lCij aCij

aa~; = JJ[rN"u:t +N.,u ij +N,.u:£] dr dO

aUb =0
aaij

aU". 11 .. 'j ijab
ij

= [N,.v:£ +N,.(rv:r - v )] dr dB

aUb =0
abij

j= 1.2•...• M

j = 1.2•...• N
(18)

(19)

aU". JJ [ .. 1 .. ....]aCij = rN,..w.rw:~ +;: N.,w••w:£+ N,.(w"w:£+ w:~w•• ) drdB

A plate solution begins by assuming that all of the coefficients aij. bij and Cij are zero.
Successive corrections to these coefficients are obtained by iterative solutions of the Newton­
Raphson matrix equation,

This equation is symmetric. The corrected coefficients, after iteration n, are

br' =bij-Abij

cr l = cli - ACij.

j =1.2•... ,M

j= 1,2, ... ,N
(21)

The starting coefficients are a~j =b~j =C~j =O. The iterations continue until the corrections
have negligible effect on the displacements computed from eqns (11).

The Newton-Raphson iteration for the minimizing coefficients requires the second deriva­
tives of the strain energies, which are recorded below in the form used by the computer
program. Only the derivatives appearing in the upper triangle of eqn (20) are needed.
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a
2
U", JJ[ aN". Ii +aN" Ij +aN,. I'.] d d.tl--= r-u --u --u, r 11

ai4Jaalj aakJ "aakJ aakJ'

a
2
U", = II [r aN". u:! + aN" ui} + aN,. u:'] drd8

aCkJaai} aCkJ aCkJ aCkJ

a
2
Um II [aN" jJ aN,. (Ij Ii)] d dfJabkJablj = abkJ v" + abkJ ro" - v r

a2
U", =JJ[aN" Ij +aN,. ( ;j - Ii)] d dfJ

a "b "v"" ro" v rCtW II oCkJ oCkJ

alUm _ JJ[~aN". N. tl) Ii 1(aN" tv. tt) 1/-aa - -a- w" + ,pW" w" +- -,,- w" + "W" w"CkJ Clj CkJ r oCkJ

( aN,. Nt') II (aN,. .., t,) I/]d dfJ+ aCkJ W" + ,.w" w" + aCkJ W" + n,.W" W" r

a2u" =JJDr (alC". +alC,,) (alCrr +alC,,) drd8
aCldaclI aCkJ aCid aC/j aCII
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(22)

ExlmaaJ moment
After the energy minimizing coefficients have been determined to a reasonable degree of

accuracy, the potential energy, n, is evaluated. Castigliano's first theorem[J4) is then used to
calculate the external moment, M. needed to produce the prescribed hub rotation, a. Since the
plate is only edge loaded, the potential energy is equal to the strain energy and the moment is
given by

M=an
aa (23)

With large rotations, this energy derivative is obtained graphiCally. With small rotations, the
potential energy is known to be a quadratic function of a, viz.

In=- K,a2
2

where K, is the rotational spring constant. In this case

and

M = K,a = 2ll/a.

(24)

(25)

(26)

The spring constant and external moment calculated from the potential energy by eqns (25) and
(26) for small rotations are very accurate, as shown by comparison with known solutions [e.g.
I). With large rotations, the strain energy is no longer a quadratic function of a but the
Castialiano theorem remains valid and eqn (23) may still be used for calculating the external
moment.

StrtSses
The membrane, (TN, and maximum-bending, (Tu, stresses shown in the next section are

calculated according to the formulae

(TN = NIt and (27)
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where Nand M take consistant subscripts ". 88 or r8. The maximum stress distribution is in
the radial direction and given by

(28)

The maximum stress (radial) occurs on the diameter of deformation symmetry, at the hub for
uniform thickness plates. It is shown in the calculated results that a variable thickness profile
can shift the maximum stress to the rim.

CALCULATED RESULTS

All of the calculated results were obtained for an aluminum plate with Young's modulus
E =10' psi (68.95 GN/m2) and Poisson's ratio II =0.33. The hub and rim radii are 'b =3.6 in
(91.44 mm) and '0 =9.0 in (228.6 mm). Fourteen terms (M =7, N =2) were taken for the
displacement functions represented by eqns (11).

Uniform thickness
The plate described above, with uniform thickness t =0,(1634 in (1.61 mm), was analytically

(using von Karman plate theory) and experimentally studied by Alzheimer and Davis [I 1, 15].
Experimental data from [11] are plotted in Fig. 3to compare with the energy solution obtained by
the procedure described in this paper. Although there is a consistant underprediction. the energy
solution agrees fairly well with the experimental data points. It also coincides with the iterative
solution of Alzheimer and Davis [11] up to approximately a =1.5 deg, where the iterative solution
(not shown) begins to overpredict the nonlinear effect.

The effect of large rotation angles on the bending and membrane stresses in the radial
direction, calculated according to eqns (27), is seen in Figs. 4 and 5. As one may expect, the
bending stresses become very high at the edges of the plate; their behavior has been
investigated as a boundary layer effect in large axisymmetric bending of annular plates[lO]. To
the writer's knowledge, the fluctuation of the corresponding membrane stress seen in Fig. 5 has
not been previously computed. The iterative solution of Alzheimer and Davis shows a linear
variation in the membrane stress for a =1.5 deg (see Fig. 6 of [IS] for membrane and bending
stress distributions). However, their solution is the result of the first iteration, beginning with
zero membrane stress and the bending stress from linear theory. Additional iterations may be
necessary to fully develop the membrane stress distribution. Note that the minima in the
membrane stress distributions of Fig. 5 appear in the high curvature regions of the deflected
plate. The midsurface deflections are indicated by the deflected radii shown in Fig. 6.

2.0o 1.0

a (deg)

Fig. 3. Calculated and measured moment-rotation data.
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Fig. 6. Transverse deflection of the radius at 8=O.

Variable thickness
The effect of variable thickness is calculated here for plates tapered according to the

thickness distribution function

(29)

where t" is the thickness at the hub. The calculated results shown in Figs. 7-9 were all made
with t" = 0.2 in (5.08 mm).

The influence of an outward taper on the bending stress distribution is shown in Fig. 7. The
hub rotation angle a =0.05 deg produces deformation in the linear range of the plates whose
bending stresses are compared in Fig. 7. The taper exponent {3 =-2 produces the hyperbolic
profile that is used in the coupling plate application mentioned in the Introduction.

Figures 8 and 9 show the effect of a large rotation angle on the bending and membrane
stresses in the plate with the hyperbolic profile. This profile produces a membrane stress
distribution (Fig. 9) that is considerably different from the membrane stress distribution in the
uniform thickness plate (see Fig. 5). In spite of the wide fluctuation of the membrane stress, the

2000

Cl'Mrr
(PSi , kPa/8.9)

1500 IhO

1000

p: -1

500

0
o. 0.6

-500

-1000

a: 0.05 deg

Fig. 7. Influence of outward taper on bending stress. Taper exponents: fJ =0 (uniform thickness), fJ =-I,
and fJ = - 2 (hyperbolic taper).
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Fig. 8. In8uence of a large hub rotation on the bending stress in a plate with hyperbolic taper. Discrete
points show the surface stress CT,. at It =0.3 deg.

general character of the maximum stress, calculated according to eqn (28), follows that of the
bending stress. This is seen in Fig. 8 where the discrete points show the surface stress Urr for
a =OJdeg.

DISCUSSION

The deformation and stress solutions presented in this paper are derived from von Karman
plate theory but the computational procedure could be applied to other plate theories as well,
such as the more complete Reissner plate theory whose equilibrium equations were integrated
for axisymmetric bending by Hart and Evans(10).

It is well-known that the success of variational solution procedures such as the Ritz method
(employed here) is directly dependent on the choice of solution functions. In the present case,
realistic stress solutions are due to the use of beam vibration eigenfunctions in the radial
dependence of the finite series (1 J) for the transverse deflection w(r, 8); in addition to being
geometricall)' admissible, these functions exhibit nonzero derivatives necessary for satisfying
natural boundary conditions. Although no natural boundary conditions are imposed here, it is
reasonable to expect that bending stresses calculated from functions that could satisfy natural
boundary conditions should be more accW'ate than bending stresses calculated from functions
that cannot satisfy these conditions. An example is given by the trigonometric functions; these
can be geometrically admissible but cannot be simultaneously capable of satisfying natural
boundary conditions. The solution of the plate problem presented in this paper was previously
attempted by using geometrically admissible trigonometric functions in the transverse dis­
placement series; extremely erratic bending stresses were found.
SS Vol. 16. No. <l-F
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rig. 9. Influence of a large hub rotation on the membrane stress in a plate with hyperbolic taper.

The application of beam vibration eigenfunctions to obtain approximate solutions of plate
and shell problems was apparently first made by Vlasov in a slight variation of Galerkin's
method. Vlasov's method is descnbed in the comprehensive book on plates by Szilard[16].

A number of other numerical procedures. includina the finite element method[17], have tbe
nonlinear capability necessary to reproduce the solutions presented in the paper. Efficiency, as
well as accuracy. is a point to be considered in selecting a solution technique. The efficiency of
the energy method as applied beret derives from the use of solution functions that combine into
a finite series which closely approximates the exact solution.

Aetnowi~-The major portion of the work described in this paper was spoosored by the Bendix Corporation,
Electric and Fluid Power Division.
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